

The 7th CIRP IPSS Conference 21-22 May 2015 Saint-Etienne, France

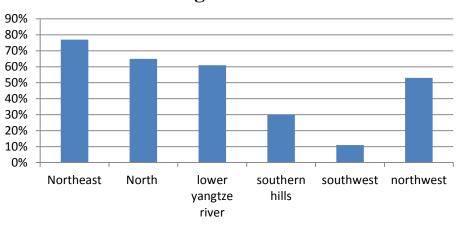
A Collaborative Service Decision-Making Method for the Delivery Management of PSS by

ZHOU Rui, Wen Jingqian, LI Xin and Hu Yaoguang

Presenting Author: ZHOU Rui Beijing Institute of Technology Beijing, China 2120140427@bit.edu.cn

CONTENTS

Introduction **Problem Statement** Method **Case Study** Conclusion


Introduction

- > Research significance
- > Literature review

Research significance

The integrated ratio of mechanically farming in China

The distribution map for the number of

machinery faults

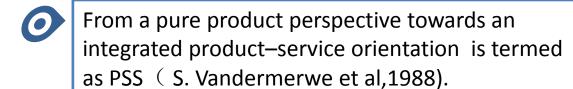
- There is a high amount of agricultural equipment in China.
- Service is becoming more and more important for enterprise.

➤ High number of machinery fault didn't get timely maintenance.

10 11 12

Fault of agricultural machinery caused heavy losses.

Research significance


Enterprises must take measures to improve the level of service delivery!

Literature Review

- ?
- **Background**
- PSS
- FTSP
- CVRP
- ! Research Gap

Service delivery has drawn the most attention (Wang X et al,2013).

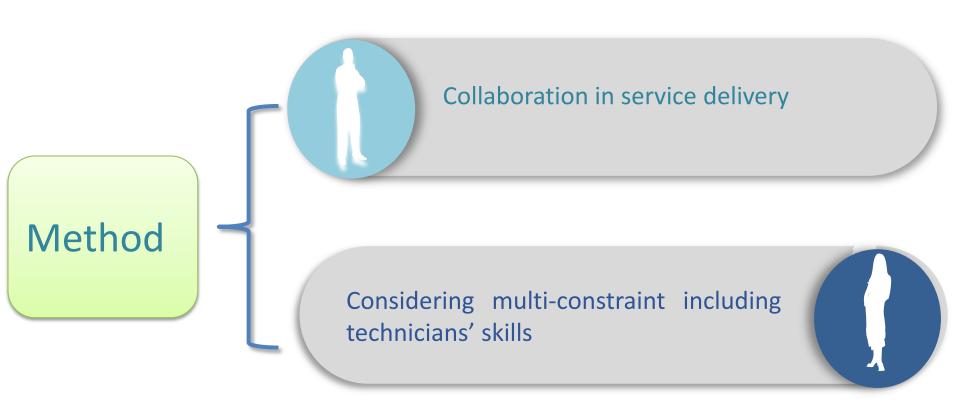
For machinery and equipment industry, services become increasingly important (Meier H et al,2013).

? Background

Assign a set of jobs, at different locations with time windows, to a group of field technicians with different job skills.

- □ Aircraft Maintenance Planning(Weigel, D et al,2010)
- ☐ Electric Utility Dispatching(Weintraub et al,2011)
- ☐ Medical Field (Fenlian Luo et al,2011)
- Natural Disaster(Fiedrich et al,2000)

CVRP (Collaborative Vehicle Routing Problem)


□ Motivating Factors

- Complexity of Delivery Management
- Sharp Competition of Market

□ Status

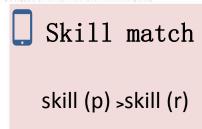
- Yet not received wide attention.
- Main in Logistics

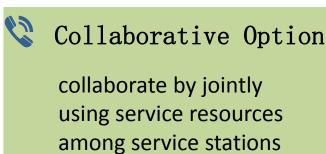
! Research Gap

Problem statement

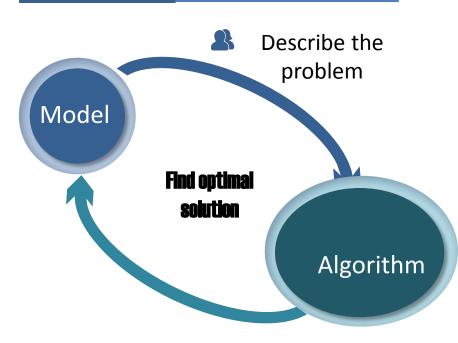
Service Providers

several service stations of the same manufacturer


Customers


customers those who required service

Constraints



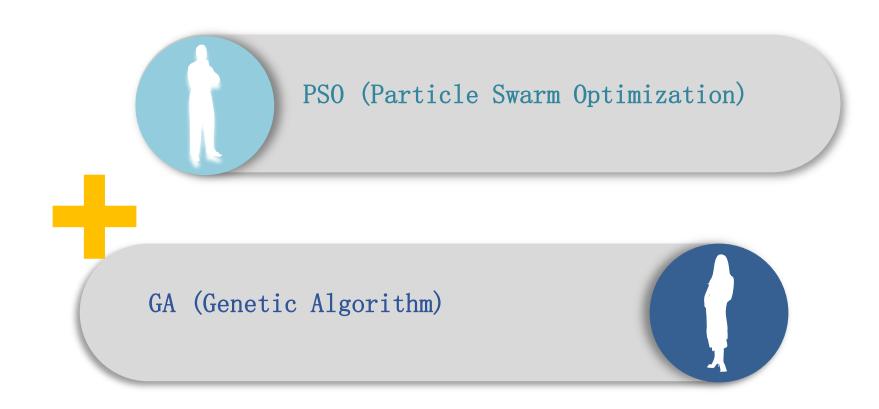
Method

Solve the model

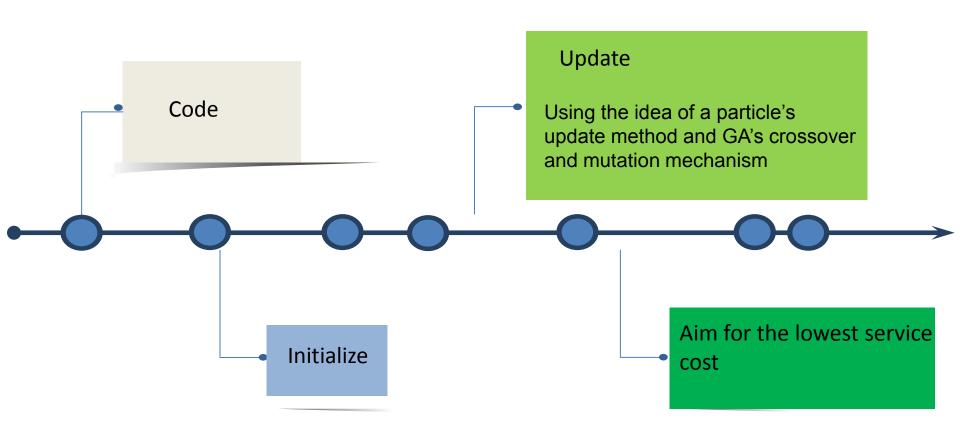
Model

Considering the existence of lots of uncertain factors

- ☐ There are good relations and cooperation among the service stations.
- ☐ Service stations are in proper geographical location and cover certain service area.
- ☐ Service time for each customer is gotten from the statistical analysis of historical data.


Model

the problem this paper study can be stated mathematically as follows:


objective function $\operatorname{Min} Z = \omega \sum_{\mathbf{m} \in M} \sum_{k \in k_{-}} \sum_{j \in M \cup C} \sum_{i \in M \cup C} d_{ij} x_{ij}^{\mathit{mk}}$ (1) $K_n \cap K_q = \emptyset$ $p,q \in M$ (2) $C_1^1 \cup C_2^2 \cup \cdots \cup C_{n-1}^{n-1} \cup C_2^{n-1} \cup C_2^{n-1} \cup \cdots \cup C_{n-1}^{n-1} \cup C_2^{n-1} \cup \cdots \cup C_{n-1}^{n-1} \cup C_{n-1}^{n-1$ (3) $\sum_{k \in \mathcal{K}} x_{mi}^{k} = 1 \quad m \in M, i \in C$ (4) $\sum_{i,M,C} x_{ij}^{mk} = \sum_{i,M,C} x_{ji}^{mk} = x_{mi}^{k} \qquad m \in M, k \in K, i \in C$ (5) $\sum_{j \in c} x_{ij}^{mk} \le 1 \quad i = m \in M, k \in K$ (6) ₽ skill match (7) $\sum_{i \in M} \sum_{i \in M} \sum_{j \in M} d_{ij} x_{ij}^{mk} \leq D \quad , m \in M, k \in K$ $(t_m^i + p_m^i + t_{ij})x_{ij}^{mk} \le b_j \quad m \in M, i, j \in C$ (9)₽ $y_{ipq} = \begin{pmatrix} 1 & i \in C, p, q \in M \end{pmatrix}$ collaborative service options (10)

Algorithm

PSO-GA

Case Study

A Experiment data

B Experiment setup

Results

D Discussion

Experiment Data and Setup

Experimental Environment: Matrix Laboratory.

Service station: A(26,25),

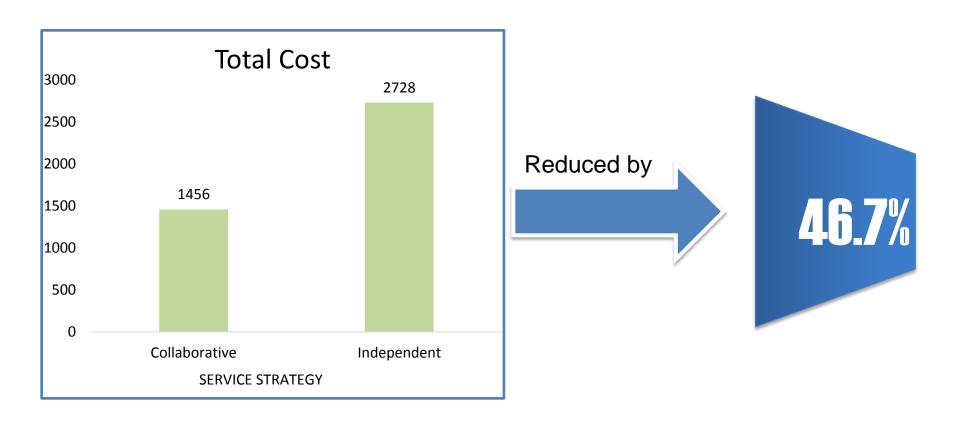
B(69,74)

Customers: 20

Technicians: 6

Skill matrix:[5 4 4 4 5 3]

Number of Particles: 50

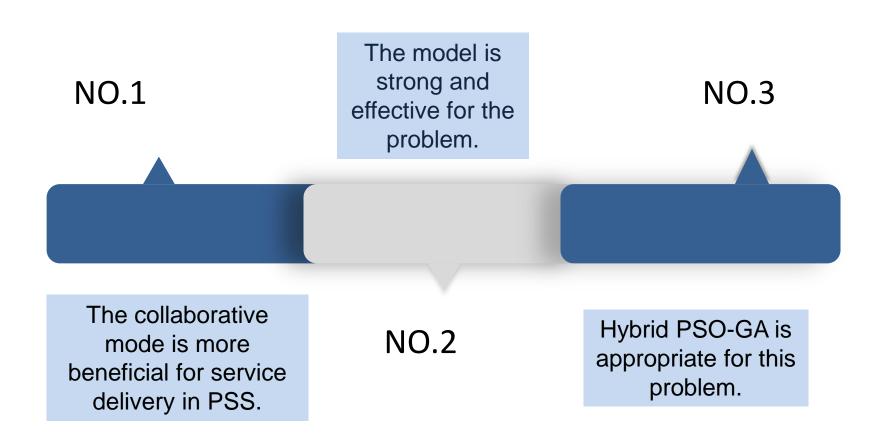

Iteration Times: 80

Customer	Demand point	t Process time(h)		level	Responsible Station
1	(25, 67)	0.8	(0.3, 3.9)	5	Α
2	(14, 18)	0.4	(1.5, 4.3)	1	Α
3	(31, 8)	0.3	(1.4, 3.1)	2	A
4	(9, 3)	0.2	(0.1, 2.3)	3	Α
5	(27, 13)	0.2	(1.4, 3.9)	4	A
6	(69, 10)	0.3	(0.4, 4.1)	2	Α
7	(89, 10)	0.7	(1.6, 2.2)	3	A
8	(20, 71)	0.3	(1.5, 3.7)	1	Α
9	(71, 22)	0.7	(2.7, 4.5)	3	Α
10	(43, 30)	0.7	(0.9, 3.6)	4	Α
11	(83, 67)	0.1	(1.8, 2.2)	2	В
12	(81, 31)	0.3	(0.8, 3.0)	3	В
13	(81, 84)	0.4	(4.1, 4.4)	3	В
14	(86, 70)	0.3	(1.4, 4.4)	2	В
15	(60, 93)	0.3	(1.9, 4.4)	2	В
16	(94, 20)	0.7	(2.7, 3.9)	4	В
17	(97, 75)	0.2	(2.4, 3.8)	5	В
18	(47, 85)	0.2	(3.0, 3.7)	2	В
19	(98, 28)	0.5	(0.7, 3.7)	3	В
20	(89, 77)	0.2	(0.2, 0.9)	3	В

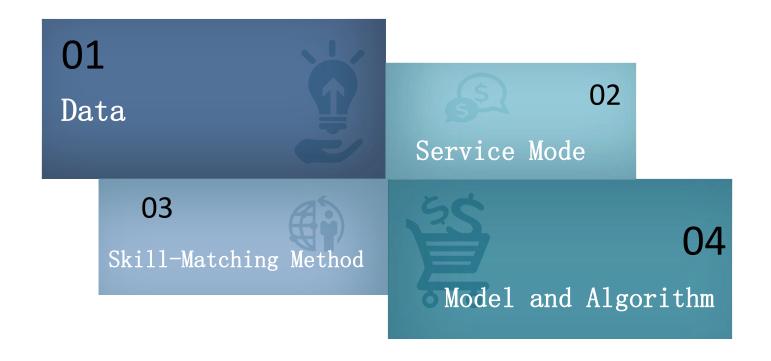
Experiment Results and Discussions

Strategy	Routes	Technician Number	Service station	Cost
	A-3-4-10-2-A	T3	Α	
	B-7-6-16-13-B	T4	В	
Collaborative	A-1-8-5-A	T1	Α	
	B-11-15-B	T6	В	1456
	B-20-14-9-19-12-B B-18-17-B	T2 T5	A B	
	A-7-5-6-9-A	T2	Α	
	A-1-8-10-A	T1	Α	1370
ndependent	A-4-3-2-A	ТЗ	А	1370
	B-19-17-13-B	T5	В	
	B-14-11-18-B	T6	В	1358
	B-20-15-12-16-B	Т4	В	1330

Experiment Results and Discussions


Conclusions

■ Method


☐ Service Mode

Conclusions

Future Research

THANKS

